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One-Dimensional Geometric Random Graphs With
Nonvanishing Densities—Part I: A Strong Zero-One

Law for Connectivity
Guang Han and Armand M. Makowski, Fellow, IEEE

Abstract—We consider a collection of � independent points
which are distributed on the unit interval ��� �� according to some
probability distribution function � . Two nodes are said to be
adjacent if their distance is less than some given threshold value.
When � admits a nonvanishing density � , we show under a weak
continuity assumption on � that the property of graph connec-
tivity for the induced geometric random graph exhibits a strong
zero-one law, and we identify the corresponding critical scaling.
This is achieved by generalizing to nonuniform distributions a
limit result obtained by Lévy for maximal spacings under the
uniform distribution.

Index Terms—Connectivity, critical scalings, geometric random
graphs, nonuniform node placement, nonvanishing densities,
zero-one laws.

I. INTRODUCTION

S TARTING with a recent paper by Gupta and Kumar [11],
there has been renewed interest in geometric random

graphs [21] as models for wireless networks. Although much
of the subsequent work has been carried out in dimension two
(and higher), the one-dimensional case has also received some
attention, e.g., see [4], [6]–[10], [12], [13], [15], [18], [19],
[24], [25] (and references therein).

Most of these references deal with the following situation.
The network comprises nodes which are distributed indepen-
dently and uniformly on the interval . Two nodes are then
said to communicate with each other if their distance is less than
some transmission range . In this setting the property of
network connectivity (for the induced geometric random graph)
is known to admit strong zero-one laws with a sharp phase tran-
sition [4], [6], [7], [9], [12], [13], [15], [19].

In this paper, we consider the case when the nodes are placed
independently on the interval according to some proba-
bility distribution . We only assume that admits a nonvan-
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ishing density with a weak continuity condition. Under these
assumptions we show that the property of network connectivity
also obeys a strong zero-one law, given in Theorem 3.1, and we
identify the corresponding critical threshold. This answers an
open problem stated in [19].

We approach this problem through the asymptotic properties
of the maximal spacings under . The main technical contri-
bution of the paper is contained in Proposition 4.1, and consti-
tutes an extension to nonuniform distributions of a well-known
asymptotic result for maximal spacings obtained by Lévy under
the uniform distribution [5], [17]. The limiting result obtained
here is related to earlier results of Deheuvels [3, Theorem 4,
p. 1183], and can be viewed as a one-dimensional version of a
strong law derived by Penrose in dimension two (and higher)
[20].

The paper is organized as follows: The network model and the
assumptions on are presented in Section II. The main result,
Theorem 3.1, is discussed in Section III, and in Section IV we
show its equivalence with Proposition 4.1. The proof of Proposi-
tion 4.1 is then developed in the next three sections: In Section V
we relate the maximal spacings under to the order statistics
induced by independent uniformly distributed random variables
(rvs). In Section VI we recall how these order statistics associ-
ated with the uniform distribution can be represented in terms
of independent and identically distributed (i.i.d.) exponentially
distributed rvs. This representation is a key ingredient of the
proof of Proposition 4.1 given in Section VII. We conclude in
Section VIII with various remarks concerning the results dis-
cussed in this paper.

A word on notation and conventions: All limiting statements,
including asymptotic equivalences, are understood with going
to infinity. Almost everywhere is abbreviated as a.e. and all such
statements are understood with respect to Lebesgue measure
on the unit interval . The rvs under consideration are all
defined on the same probability triple . Probabilistic
statements are made with respect to the probability measure ,
and we denote the corresponding expectation operator by . The
notation (respectively, ) is used to signify convergence
in probability (respectively, convergence in distribution) with

going to infinity. Also, we use the notation to indicate
distributional equality.

II. MODEL AND ASSUMPTIONS

Throughout, let denote a sequence of i.i.d.
rvs which are distributed on the unit interval according to
some common probability distribution function . For each
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, we think of as the locations of nodes,
labelled , in the interval . Given a fixed distance
or transmission range , two nodes are said to be adjacent
if their distance is at most , i.e., nodes and are adjacent
if , in which case an undirected edge is said
to exist between them. The relevance of this model to wireless
networking is discussed in Section VIII-A.

This notion of adjacency gives rise to an undirected geometric
random graph on the set of nodes , thereafter denoted
by . As usual, is said to be connected if every
pair of nodes can be linked by at least one path over the edges
of the graph. The probability of graph connectivity is simply

is connected

Obviously whenever .
A number of assumptions are imposed on . The most basic

one is given first.

Assumption 1: The distribution is abso-
lutely continuous (with respect to ).

Thus, is differentiable a.e. on with and
, and the relation

(1)

holds for some density function . This density
is determined up to a.e. equivalence [27, Sec. 9.2].
The essential infimum1

is uniquely determined by , hence by (the equivalence class
of) . There is no loss of generality in selecting (as we do from
now on) the density which appears in (1) so that

(2)

This can be achieved by suitably redefining on a set of zero
Lebesgue measure, and will not affect the results obtained here
since this procedure leaves unchanged.

It is plain that with corresponding to the
case when is the uniform distribution. Our main assumption
requires the density to be bounded away from zero in the fol-
lowing technical sense.

Assumption 2: With the density selected such that (2) holds,
there exists in the interval such that

(3)

and this point is a point of continuity for .

The condition amounts to the distribution function
being strictly increasing. Note that the minimizer appearing in
Assumption 2 is not necessarily unique. However, the continuity

1Recall that

� � ����� � � ���� � ��� 	
 � ���� � ��� � ���

exhibited by at such a minimizer implies that for every
, there exists such that

(4)

whenever in .

III. THE MAIN RESULT

A scaling is any mapping . Of particular interest
is the scaling defined by

(5)

As the next result shows, this scaling occupies a special place in
the context of zero-one laws for graph connectivity in .

Theorem 3.1: Assumptions 1 and 2 are enforced on . For
any scaling such that

(6)

for some , we have

if
if

(7)

This zero-one law is sometimes given in the following seem-
ingly weaker, but equivalent, form.

Corollary 3.2: Under the assumptions of Theorem 3.1, the
convergence (7) under (6) is equivalent to

if
if

(8)

Proof: We need only show that the zero-one law (8) implies
the convergence (7) under (6). Thus, pick a scaling

such that (6) holds for some . In that case, for every
in , there exists a positive integer such that

for all . For each , the function
is monotone increasing on so that

(9)

and

(10)

for all .
For some given we can always pick in so that

. With this selection we conclude from (9) that

hence by the one-law at (8) (with
replaced by ). It is now plain that
as desired.

Similar arguments apply mutatis mutandis to get the zero-law
of Theorem 3.1: With we use (10) and the zero-law
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at (8) (with replaced by where is selected so that
). Details are left to the interested reader.

Implications of Theorem 3.1 for power allocation are given in
Section VIII-A, and pointers to earlier results are discussed in
Sections VIII-B and VIII-C. It is worth noting that is the only
artifact of the density function which enters Theorem 3.1—The
actual location where the minimum is achieved plays no role
as long as it is a point of continuity for .

Theorem 3.1 identifies the scaling given by

(11)

as a critical scaling for graph connectivity. Roughly speaking,
for large, a communication range suitably larger (respec-
tively, smaller) than ensures that the graph is con-
nected (respectively, disconnected) with very high probability if

with (respectively, ). It is cus-
tomary [18, p. 376] to summarize (6)–(7) as a strong zero-one
law, and to call the scaling a strong critical
scaling. The boundary case is more delicate and is par-
tially handled with the help of the very strong zero-one law de-
veloped in [16]; see also [13] and [15] in the uniform case.

Theorem 3.1 also implies

if

if (12)

with scaling . According to (12), the one law
(respectively, zero law) emerges when considering scalings

which are at least an order of magnitude larger (re-
spectively, smaller) than . Contrast this with (6)–(7) where
the one law (respectively, zero law) holds for scalings

which are larger (respectively, smaller) than but still of
the same order of magnitude as ! It is therefore natural to
refer to the situation (12) as a weak zero-one law and to call the
scaling a weak critical scaling [18, p. 376].

Note that is also a weak critical scaling for connectivity
under any distribution satisfying the assumptions of The-
orem 3.1, a somewhat robust, albeit weak, conclusion.

IV. AN EQUIVALENCE RESULT

Fix . With the node locations , we
associate the rvs which are the locations of the

users arranged in increasing order, i.e.,
with the convention and . The rvs

are the order statistics associated with the rvs
; they induce the spacings

(13)

We also introduce the maximal spacing as the rv defined by

(14)

For each , the graph is connected if and only if
for all , so that

(15)

The main technical contribution of this paper takes the following
form.

Proposition 4.1: Under Assumptions 1 and 2 on , we have
the convergence

(16)

Proposition 4.1 is related to earlier results by Deheuvels [3,
Theorem 4, p. 1183] and Penrose [20, Theorem 1.1, p. 247]; see
the discussion in Sections VIII-B and VIII-C, respectively. The
relevance of Proposition 4.1 to Theorem 3.1 lies in the following
equivalence.

Lemma 4.2: Under the assumptions of Theorem 3.1, the con-
vergence (7) under (6) is equivalent to (16)

Proof: We note that (16) is equivalent to

(17)

since the modes of convergence in distribution and in proba-
bility are equivalent when the limit is a constant [1, p. 25]. In
particular, this amounts to

if
if

(18)

By virtue of (15) this last convergence is just a rewriting of (8),
and the desired equivalence now follows from Corollary 3.2.

Thus, the zero-one law of Theorem 3.1 is an expression of
the limiting property (16) exhibited by the sequence of maximal
spacings . The proof of this convergence is
developed in the next three sections.

V. BACK TO UNIFORM VARIATES

The first step consists in showing how the maximal spacings
under are determined by the order statistics under the uniform
distribution.

To prepare the discussion, note that the mapping
is nondecreasing as a distribution function, hence admits

a generalized inverse [23, Sec. 0.2]. How-
ever, under (3) the continuous mapping is
strictly increasing, hence invertible in the usual sense. Thus, the
generalized inverse coincides with the usual inverse which is
strictly increasing and continuous.

Under Assumption 1, the mapping is
absolutely continuous, hence differentiable a.e. on . From
the obvious identity on , we see that is
differentiable at if is itself differentiable at , in which
case we have

with mapping defined by
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In fact, a little more can be said in that the inverse mapping
is also absolutely continuous whenever

, and the relation

(19)

therefore holds. Details are left to the interested reader. In addi-
tion to the i.i.d. -valued rvs , consider
a second collection of i.i.d. rvs which are
all uniformly distributed on —For instance, we can take

for all . In analogy with the earlier
notation, for each , we introduce the order statistics

associated with the i.i.d. rvs , and
we again use the convention and . Key to
our approach is the well-known stochastic equivalence [2, p. 15]
that

so that

The representation

(20)

follows from (19) upon noting that

for each .
These observations suggest that the convergence (16) is

likely to emerge through the asymptotic properties of the rvs
modulated by the function (via ).

VI. A USEFUL REPRESENTATION AND RELATED FACTS

In a second step we leverage the representation (20) by
relying on the following representation of the order statistics

: Consider a collection of
i.i.d. rvs which are exponentially distributed with unit param-
eter, and set

For all , the stochastic equivalence

(21)

is known to hold [22, p. 403] (and references therein).
In the remainder of this section, we explore some easy facts

concerning maxima of i.i.d. exponentially distributed rvs. As the
reader may have already guessed, these quantities (via (20) and
(21)) will play a crucial role in the proof of Proposition 4.1.
Thus, for each , let denote a nonempty subset of

, and write for its cardinality. Also set

(22)

Lemma 6.1: The convergence

(23)

takes place whenever there exists some in such that

(24)

Proof: Fix and . By independence, we
get

so that

It is clear that

if
if

and with the help of (24) it is now straightforward to see that

if
if

As this last convergence implies

the convergence (23) follows from the fact that convergence in
distribution is equivalent to convergence in probability when the
limit is a constant ([1, p. 25].

Lemma 6.1 has a number of useful consequences which we
now discuss. For each , write

(25)

with

(26)

These quantities coincide with similar quantities given by
(13) and (14), respectively, when is taken to be the uniform
distribution on . The following result is a byproduct of
Lemma 6.1.

Lemma 6.2: Under the assumptions of Lemma 6.1 we also
have

(27)

Proof: By virtue of (26) and of the stochastic identity (21),
we note that



5836 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER 2009

Hence, in order to establish (27) we need only show that

(28)

a convergence statement equivalent to

(29)

The validity of (29) follows from Lemma 6.1 since

a.s. (30)

by the Strong Law of Large Numbers.

Specializing Lemma 6.2 to (so that ),
we find

(31)

This result was already obtained by Lévy [5], [17], and yields
Theorem 3.1 (via Lemma 4.2) when is the uniform distri-
bution since then . Slud has shown [26, Theorem 2.1,
p. 343] that

a.s.

so that the convergence (31) does in fact hold in the stronger a.s.
sense.

VII. A PROOF OF PROPOSITION 4.1

Fix . Upon setting

we define the rv given by

(32)

It is plain from (20) and (21) that , and the conver-
gence (16) will be established if we show that

(33)

Thus, for every we need to show that

(34)

This is equivalent to the simultaneous validity of the two con-
vergence statements

(35)

and

(36)

A. Establishing the Convergence (35)

For each , the easy upper bounds

follow with the help of (2) from the inequalities

(37)

This readily implies

(38)

with given by (22) (with ). As
in the proof of Lemma 6.2 (essentially (29)) we conclude that

(39)

Consequently, as the upper bound (38) implies

for all , we obtain the desired convergence (35)
from (39) upon letting go to infinity in this last inequality.

B. A Localization Argument

The proof of (36) is more involved and relies on a suitable
lower bound for the maximum . This bound is constructed
by considering a subset of the rvs entering the
definition (32). The basic idea amounts to the following local-
ization argument: Pick any element in which achieves
the minimum of as stated in Assumption 2. The distribu-
tion function being continuous and strictly increasing, the
value is the unique element in such that

. We then construct the lower bound by keeping
only those values of for which the endpoints of
the interval have a very high likelihood of being
very close to as grows large. In the limiting regime the
values taken by on such an interval can be made
arbitrarily close to , say no greater than for ar-
bitrarily small . A detailed construction is presented next.

For every we note from (4) that
whenever is selected in such that

(with ensuring (4)). Since (19) and (37) together
imply

it follows that

if (40)

with .
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Under the enforced assumptions, we have (re-
spectively, ) if and only if (respec-
tively, ). Below we give a complete discussion
for the case , as the two other cases can be handled
mutatis mutandis.

Thus, assume so that , or equivalently,

(41)

It is always possible to pick such that

(42)

in which case and . For each ,
we introduce the subset of defined by

As we are interested in limiting results, we need only consider
with (as we do from now on),

in which case and .
Fix with . It is plain that

(43)

where we have set

To proceed, we observe the following elementary facts. For
each and , we have

so that

a.s. (44)

by the Strong Law of Large Numbers. Building on this observa-
tion, given , for each we introduce the events

for and , and set

The convergence (44) then yields

(45)

Fix and pick such that
; such a choice for is always possible under (42). On

the event , it is automatically the case that

and

The inclusion

(46)

Fig. 1. The random interval � �� � ��.

now follows where is the random interval given by

C. Establishing the Convergence (36)

Fix and in where ensures (4). Pick in
and such that the conditions

hold—This is always possible under (41), possibly by reducing
appropriately without affecting (40). With these choices, still

on the event , we observe from (46) that the inclusions

hold. See Fig. 1. The two solid regions identify the ranges of
possible values for the boundary points of the random interval

, namely and .
From (40), we conclude that the inequalities

all hold, hence

since . In the notation (22) (with
), the inequality

(47)

readily follows, hence

(48)

by virtue of (43). Thus, on the event , for a given ,

the inequality readily implies (via (48)) that

(49)

with
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By standard bounding and decomposition arguments, we then
get

(50)

Note that (36) needs to be established only for for
otherwise the convergence is trivially true. Thus, pick

and note that can be selected sufficiently small such that
since this last condition is equivalent to

With such a selection of , we have

(51)

since

This last convergence follows by combining (30) and Lemma
6.1 (with ).2 Finally, let go to infinity in (50).
The desired result (36) follows from (45) and (51).

The cases and can be analyzed in a similar
way. Still with , we have and ,
respectively. As a result we need only change the definition of

to and , respectively,
for large enough in order to ensure .
Details are left to the interested reader.

VIII. CONCLUDING REMARKS

A. Zero-One Laws and Critical Transmission Ranges

The one-dimensional model considered here arises in the
same manner as the two-dimensional disk model by assuming
a simplified pathloss, no user interference and no fading: Users
(or interchangeably, nodes) all transmit at the same power level

. For distinct users located at and , say, their received
power is assumed given by

for some pathloss exponent . Nodes and are then said
to communicate if for some threshold . This
condition is equivalent to requiring

with

2This is in essence the proof of Lemma 6.2; see (29).

and shows that the transmission range is a proxy for the
transmit power .

A natural question consists in determining the minimum
power level needed to ensure network connectivity amongst
the nodes located at . Expressed in terms of com-
munication range, this amounts to considering the critical
transmission range defined as

is connected

However, being a function of , the rv has limited
operational use since the node locations are neither available nor
should their knowledge be expected, especially in the presence
of mobility. Enters Proposition 4.1: The identity
allows the critical scaling to be interpretated
as a deterministic estimate of the critical transmission range in
many node networks since with high probability
for large (as formalized by (16)). The corresponding critical
power level is now given by

Put differently, the network with nodes transmitting at power
level is connected (respectively, disconnected) with very
high probability if (respectively, ) for large.

B. Connections With Earlier Results

Of particular interest are earlier results given by Deheuvels
[3] under the following conditions: i) the density function is
continuous on ; ii) the minimizer appearing in (3) is an
isolated minimizer; iii) for some finite constant , we have

where3

Under these conditions, Deheuvels [3, Theorem 4, p. 1183]
(with ) has shown that

a.s. (52)

and

a.s. (53)

Therefore, noting that

for all , we readily see from (52) and (53) that the
convergence (16) holds (in fact in the a.s. sense).

3This is the form that the conditions take when � is an interior point of the
interval ��� ��. Obvious modifications need to be made when either � � � or
� � �.
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Thus, an a.s. version of Proposition 4.1 is an easy byproduct
of the results by Deheuvels [3] provided we assume conditions
much stronger than the ones enforced in the present paper. In
the work reported here, the conditions i)–iii) are not needed, but
the convergence result (16) is established only in probability. As
a result of this tradeoff we are able to give a simpler and more
direct proof.

C. In Higher Dimensions

The convergence (16) is compatible with a multidimensional
result obtained by Penrose [20]: Theorem 1.1 of [20, p. 247] was
discussed under the dimensional assumption by methods
very different from the ones used here. Yet, formally setting

in it, we recover (16) but in the a.s. sense.

D. The Case of Vanishing Densities

When , a blind application of (11) yields
for all . This begs the question as to what be-
comes of Theorem 3.1. Direct inspection shows that (16) cannot
hold when , thereby precluding the existence of a strong
zero-one law (by the equivalence of Lemma 4.2). In fact, with a
node placement distribution of the form

for some , the authors have shown [14] that only a weak
zero-one law holds with (weak) critical scaling given by
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